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Abstract. In-vitro tests are an alternative to animal testing for the
toxicity of medical devices. Detecting cells as a first step, a cell expert
evaluates the growth of cells according to cytotoxicity grade under the
microscope. Thus, human fatigue plays a role in error making, making the
use of deep learning appealing. Due to the high cost of training data an-
notation, an approach without manual annotation is needed. We propose
Seamless Iterative Semi-Supervised correction of Imperfect labels (SISSI),
a new method for training object detection models with noisy and miss-
ing annotations in a semi-supervised fashion. Our network learns from
noisy labels generated with simple image processing algorithms, which
are iteratively corrected during self-training. Due to the nature of missing
bounding boxes in the pseudo labels, which would negatively affect the
training, we propose to train on dynamically generated synthetic-like im-
ages using seamless cloning. Our method successfully provides an adap-
tive early learning correction technique for object detection. The combi-
nation of early learning correction that has been applied in classification
and semantic segmentation before and synthetic-like image generation
proves to be more effective than the usual semi-supervised approach by
> 15% AP and > 20% AR across three different readers. Our code is
available at https://github.com/marwankefah /SISSI.

Keywords: Label Correction - Cell Detection - Semi-Supervised Object
Detection

1 Introduction

Testing medical devices with animals have a long tradition according to ISO
10993 [I]. Since 2017 the ISO 10993 has gradually evolved towards implement-
ing alternative test methods. One of the in-vitro methods is the testing of cyto-
toxicity, described in the ISO 10993-5 [3]. Cell experts analyze cell growth of a
fibroblast cell line such as L.929 with the help of a microscope. The acceptance
criteria for medical devices is 50% of dead cells (grade 2 criteria). If there are
more than 50% dead cells, the medical device is not allowed to enter the market.
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Fig. 1. Overall scheme of SISSI framework.

In this context, deep learning can serve as a second opinion since human error
in the workplace is costly and dependent on the level of fatigue; the greater the
level of fatigue, the higher the risk of errors occurring. Especially in the border-
line cases of grade 2, the cell expert needs to be able to obtain a second opinion
that is independent of human fatigue. Deep learning has shown substantial ben-
efits in different life science and pharma applications such as chemo-informatics,
computational genomics, and biomedical imaging such as cell segmentation [12]
and seems to be a promising supplement to cytotoxicity grading. In the first
instance, cells need to be detected, and in future work, an intuitive way of clas-
sifying cells into dead or alive needs to be found.

When dealing with imperfect datasets, problems including (partly) missing,
inaccurate, or wrong labels arise. To handle imperfect datasets in object detec-
tion/segmentation tasks, one can leverage unlabelled (self/semi-supervised) or
external labelled (transfer learning) data, regularise training, learn with class
labels, and revisit loss functions (sparse/noisy labels) [15].

2 Related Works

Previous work has studied imperfect datasets, including semantic segmentation,
instance segmentation, and object detection [I8[T9M4]. [I8] propose a pipeline
for semantic semi-supervised segmentation that separates pixels of a pseudo
labelled image into reliable and unreliable. [6] propose Adaptive Early Learning
Correction (ADELE) for semantic segmentation, with a supervised early-learning
phase and subsequently a label correction phase. [§] propose a label mining
pipeline for missing annotations using co-teaching for instance segmentation.
[19] propose to generate masks with the Circle Hough Transform (CHT) and
iteratively create pseudo labels with self-training for images where CHT failed.
[20] propose to use a background calibration loss inspired by focal loss for object
detection with missing annotations. [4] propose only annotating one instance
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Fig. 2. Examples of the the labelled source and the noisy labelled target datasets.

per category in an image and iteratively generating pseudo-labels. [2] propose
an object detector to handle noisy labels, masking the negative sample loss in
the box predictor to avoid the harm of false-negative labels.

Though advances in dealing with imperfect datasets have been made, the
problem of dealing with datasets having partly missing labels that are addition-
ally noisy in object detection tasks remains.

We propose SISSI (Seamless Iterative Semi-Supervised correction of Imper-
fect labels) for training object detection models with noisy and missing labels
in a semi-supervised fashion, see Fig. [Il We perform several experiments with
mixed-batch training, self-training with iterative label correction, synthetic-like
image generation, and altering the starting point of self-training (ADELE vs.
validation loss).

3 Materials and Methods

3.1 Datasets

Microscopy images of fibroblast (L929) were aquired using a Nikon Eclipse TS
100 microscope and the OPTOCAM-I camera. This trainset (CellLab dataset)
consists of 224 images, and their noisy annotations are generated with simple im-
age processing pipelines such as Circle Hough Transform, Watershed, and Edge
Detection. A detailed description of the initial weak label generation is shown in
Fig. 5 in Appendix A. The CellLab testset consists of five images (640 x 480) an-
notated by three cell experts. Three readers annotated five images independently,
resulting in (reader 1) 552, (reader 2) 565, and (reader 3) 477 annotated cells for
the five images. In order to perform domain adaptation and enhance our weak
and noisy labelled CellLab dataset, we use the labelled Cellpose [14] dataset.
It consists of a large variety of fluorescent markers and image modalities, as well
as natural images that can be segmented into repetitive structures/blobs. The
Cellpose dataset is used for training (45,215 cells on 539 images) and validation
(7,195 cells on 68 images). We extract bounding boxes from the segmentation
masks for our detection task. We show examples of both datasets in Fig. [2]
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3.2 Overall Framework

SISSI integrates a range of image processing and deep learning methods to make
iterative label correction possible.

The early learning phase consists of a mixed-batch training combining the
CellLab and Cellpose training datasets. We train the Faster R-CNN model in
a supervised fashion with a Balanced Gradient Contribution [II], mixed-batch
training, of target dataset with initial noisy annotations and source dataset until
a memorisation phase on the noisy annotations is reached. We determine the end
of early learning with a deceleration point based on the APsq curve between the
weak ground truth of the CellLab dataset and the model output.

In the following semi-supervised phase for each cycle, first, we apply la-
bel correction, followed by mixed-batch training with the pseudo labels and
synthetic-like images (excluding undetected cells) of the CellLab dataset com-
bined with the original Cellpose dataset. Pseudo-label generation uses test-time
augmentation and weighted boxes fusion to generate confident bounding boxes.
Since some cells are not detected, their appearance in the original image will
confuse the network while training. Thus, we generate dynamically synthetic-
like images for continual training. The overall scheme of SISSI framework is
shown in Fig. [I}

3.3 Determining the Start of the Semi-Supervised Phase

While training with mixed-batch training, we notice a two-stage learning phe-
nomenon previously noted in classification and semantic segmentation: in an
early learning phase, the network fits the clean annotations; then, the network
start memorising the initial noisy annotations [7J6]. To find the optimal point
that represents when the memorisation phase starts, we adopt a method, ADELE
[6], that has been used in previous works in the context of semantic segmenta-
tion. In our work, we rely on the deceleration of the APsq training curve of the
model output and the initial noisy annotated dataset, CellLab, to decide when
to stop trusting the initial noisy annotations and generate pseudo labels. See
Fig. 7 in Appendix B for the APsq training curve with the point representing
when the memorisation phase starts.

3.4 Pseudo Label Generation

Pseudo label generation is a technique where a pre-trained neural network gen-
erates labels for unlabelled data or updates labels for noisy labeled data [16]. We
generate pseudo labels to update the noisy annotations of the CellLab dataset
during the semi-supervised phase. Self-training networks have the disadvantage
of being unable to correct their own mistakes. Therefore biased and wrong labels
can be amplified. To filter potential bounding boxes, we integrate two techniques,
test-time augmentation (TTA) [I7] and weighted boxes fusion (WBF) [13]. We
average predictions generated with TTA while considering the confidence score
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where T is the number for bounding boxes assigned to a single object in a cluster,
X1 2 (or Y7,2) is the average start and end point on the x (or y) axis. This yields
the average of the bounding box coordinates X o, (or Y7 o,), weighted with the
confidence score C; for each bounding box.

3.5 Synthetic-like image adaptation according to pseudo labels

Undetected cells in the pseudo labels would affect the further training negatively.
When the network localises true objects that are not present in the pseudo-labels,
the network is penalised for those objects that are true. To solve this problem, we
propose to generate synthetic-like images dynamically according to the pseudo
labels generated for the CellLab dataset, see Fig.|3] To remove unlabeled cells in
the training image in order not to confuse the network, we clone all the detected
cells of the pseudo label (source) onto a strongly /weakly Gaussian blurred image
(target). To avoid discontinuities between the target and the source, we mix edge
textures with the seamless cloning algorithm (mixing gradient) [9].

4 Experiments

4.1 Implementation Details

The backbone of our Faster R-CNN is a ResNet-50, pre-trained on the MS COCO
dataset [5]. We set hyperparameters according to existing Fast/Faster R-CNN
work [10]. We do not freeze any layer to allow the gradient to propagate through
the early layers.

We train the models using the Stochastic Gradient Descent (SGD) optimiser
with a momentum of 0.9, weight decay of 0.0002, and learning rate of 0.001. We
use a batch size of 8, with an equal number of images randomly chosen from
the CellLab and Cellpose datasets, and resize the images to 512 x 512. We per-
form simple augmentations: channel shuffle, Gaussian blurring, horizontal flip,
vertical flip, and shift-scale-rotate. For test-time augmentation used for label
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Algorithm 1 Pseudocode for iterative self-training with SISSI, prediction (p),
target (t), bounding boxes (bbs).

Require: C'Limg, CLbbs:, C Pimg, C Pbbs: > CellLab and Cellpose datasets
Require: NN (img) > Faster R-CNN
Require: E < this.self training epoch

for each pseudo_batch B in E do > Pseudo label generation

CLbbsp[n], scores[n] < NN(TTA(CLimg € B)) > Generate boxes with TTA
CLbbsy + (Z::]:l scores[n] - CLbbsp[n])/ 22;1 scores[n] > Filter bbs with WBF

update _dataset(C Lbbs;) > Update final pseudo label
end for
for each mixed batch B in E do > Training
CLimg_crops[n] « crop(CLimg, C Lbbs) > Synthetic image generation

CLimg_blur < blur(CLimg)
CLimg _synth < seamless _clone(CLimg_blur,CLimg crops[n])
CLbbs,, CPbbs, + NN(CLimg_synth, CPimg € B) > Prediction
CLCP _loss < loss([C'Lbbsy, CPbbsy], |[C Lbbsy, C Pbbsi]) > Loss calculation
CLCP _loss.backprop()

end for

E.next()

correction, we use a combination of scaling ([0.8, 0.9, 1, 1.1, 1.2]) and augmen-
tations, vertical flipping, horizontal flipping, horizontal-+vertical flipping, or no
flipping. We end up with 20 versions of the same image. For background blurring
in the synthetic-like image generation, we use Gaussian blurring with kernels of
(21, 21) and kernels (12, 32), referred to as weak(W) and strong(S) background
blurring respectively.

The datasets are used as follows. Mixed-batch training is applied in both the
early supervised and semi-supervised learning phases, combining the CellLab and
Cellpose training sets. With the start of self-training, labels and synthetic-like
images for the CellLab dataset are updated in each following epoch. To perform
validation for hyperparameter tuning, we use the Cellpose dataset since only five
manually annotated images are available in the CellLab dataset, which all are
used as a testset. For estimating the end of early learning, the weak training
labels of CellLab are compared to the model output as proposed in ADELE. We
calculate deceleration by the relative change in the derivative of the AP5q curve,
and if it is above a certain threshold, 0.9, then label correction starts.

4.2 Evaluation Metrics and Results

In Table[1] we report three versions of AP, and AR over the CellLab testset. The
metrics include the Pascal VOC metric (APsg), as well as COCO evaluation
metrics [5] (APrs, and AP and AR averaged over different IoU thresholds).
Bold numbers denote the best performance for each of the three cell experts’
annotations.

We present the detection performance of different experiments on the Cel-
ILab testset. The Baseline model is first trained in a supervised fashion with
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Fig. 4. Demonstration of improvement of results with our proposed method.

mixed-batch training of CellLab and Cellpose datasets. Aiming to correct and
complete the labels, we perform early-stopping based on the validation loss of
the source dataset, Cellpose, and apply self-training with test-time augmenta-
tion (TTA) and weighted boxes fusion (WBF) to iteratively update the pseudo
labels. The following two experiments SISSI(W) and SISSI(S) additionally use
synthetic-like image generation for the CellLab images, based on the pseudo la-
bels generated with TTA and WBF. The weak (W) background blurring achieved
better results than the baseline, while strong (S) background blurring has worse
performance. Plain A, is an additional experiment similar to baseline setting
but with an additional algorithm (ADELE) to find an optimal starting point for
label correction. This shows an increase of about 10% across all readers in the
AR metrics, compared to the baseline model, while the AP is lower.

Two versions of the final pipeline show the best results. It combines all steps
(1) supervised learning with mixed-batch training of CellLab and Cellpose till a
memorisation point is reached, (2) iteratively applying pseudo-label generation
for the CellLab dataset with test-time augmentation and weighted boxes fusion,
(3) generation of synthetic-like images according to the pseudo labels, and (4)
training the network for an Epoch with mixed-batch training of the Cellpose
dataset and the pseudo labels and synthetic-like images of the CellLab dataset.
Pseudo code for the loop of 2-4 can be seen in Algorithm[I} Incorporating ADELE
with our label correction and synthetic-like image generation method with strong
blurring increases the AP by at least 15% and AR by at least 20% compared to
the baseline across all cell experts. On Fig. [d we show an example where SISSI
successfully improves the detection results of Plain A (ADELE) experiment.
Examples of a training image with its pseudo labels for different epochs (t) and
experiments can be seen in Fig. 8 in Appendix B.

5 Discussion

5.1 Findings

The experiments made clear that both the start of label correction and the
amount of background information appearing in images during training impact
the results. When starting label correction too early, during early learning, the
network is not confident enough to detect all objects in the image; thus, cor-
recting initially noisy annotations at this stage results in a high rate of missing
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Table 1. Results of Cell Detection on the CellLab testset.

Annotator 1 Annotator 2 Annotator 3
Pipeline AP50 AP75 AP AR AP50 AP75 AP AR AP50 AP75 AP AR
Baseline 45.6 15.7 21.3 32.7| 44.3 16.1 20.2 31.0/58.6 28.1 29.7 41.8
SISSI(W) 52.8 23.2 259 37.7| 49.5 21.3 24.4 34.6| 58.5 29.0 29.7 42.0
SISSI(S) 40.3 8.3 16.2 32.8| 384 7.2 15.2 31.8| 46.6 9.7 19.2 37.8
Plain A 38.7 189 19.2 43.9| 35.8 18.6 18.7 43.1| 41.2 23.8 22.9 50.6
A-+SISSI(W) | 43.1 37.1 36.0 60.3| 45.1 38.5 37.4 58.8| 47.6 42.8 41.4 66.9
A+SISSI(S) |54.9 49.0 43.2 57.6/51.2 45.1 39.7 54.3| 58.5 55.5 47.9 64.9

targets. Training a network on images with high missing targets without SISSI
(Plain A) increases the uncertainty of the network compared to label correction
in a later memorization phase with fewer missing targets, the baseline.

In the basic SISSI approach, where label correction is started on a model
chosen based on the validation loss of the external Cellpose dataset, weak back-
ground blurring worked better than a strongly blurred background. We believe
this phenomenon appears because the neural network has learned more contex-
tual information in the memorisation stage and requires the background infor-
mation.

On the other hand, starting label correction when the early learning phase
ends, according to ADELE, strong blurring shows better results than weak blur-
ring. The information about the background is less important. This can be an
advantage in synthetic-like image generation because figuring out how to pre-
serve contextual information seems less critical.

5.2 Limitations

The success of SISSI may be dependent on the stopping criteria and the training
phase, early learning/memorisation phase. When the annotations in the image
are too noisy, the network may not encompass the early learning phase as in
previous works, ADELE. It may be unable to learn the task to produce new
pseudo labels for further training. The effect of blurring during different training
phases needs more empirical research for verification. SISSI is a simple approach
that works with only one class of interest to detect. Blurring with multi-object
needs further modification in future works. We use SISSI in these experiments
with Faster R-CNN, which is more robust and friendly for the missing label
scenario than other detection networks.

5.3 Conclusion

This paper presents a method to train object detection models with noisy and
missing annotations with semi-supervised learning by proposing a novel tech-
nique. We use dynamically generated synthetic-like images using seamless cloning
for further training the network after pseudo-label generation. We utilize a do-
main adaptation technique, Balanced Gradient Contribution, to generate stable
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gradient directions and mitigate the so noisy annotation problem for our semi-
supervised training. Finally, we evaluate our method for the cell detection task
with various training procedures and show its improvement over the usual semi-
supervised approach. Our method, SISSI, can be added on top of any detection
network, and it also helps other methods like ADELE to be leveraged for object
detection. In the future, we will adapt our method to work with multi-object
detection and explore SISSI with different detection networks. Moreover, we will
explore our method for different medical detection tasks and integrate our net-
work to help cell experts with the grading task.
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